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Fractional Langevin model of memory in financial time series
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Financial time series are random with the absolute value of the price index fluctuations having an inverse
power-law correlation. A dynamical model of this behavior is proposed using a fractional Langevin equation.
The physical basis for this model is the divergence of the microscopic time scale to overlap with the macro-
scopic time scale: a condition that is not observed in classical statistical mechanics. This time-scale separation
provides a mechanism for the market to adjust the volitility of the price index fluctuations.
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In classical statistical physics the separation of the mic
scopic and macroscopic time scales is manifest in the ce
limit theorem. The separation of time scales implies that
macroscopic dynamics can be described by the ordinary
chastic differential calculus, even if the microscopic dyna
ics are incompatible with the methods of ordinary calcu
@1#. When such a separation of time scales exists, the La
vin equation adequately describes the dynamics of the ph
cal phenomenon. A similar conclusion was reached by Ba
elier @2# in 1900, in his development of the phase-spa
equation of motion for the probability density characterizi
the price fluctuations in the French stock market. The in
pretation of financial markets using random walk mod
was given by Cootners in@3#, in which an English translation
of Bachelier’s original paper resides.

On the other hand, when this separation of time sca
does not exist, the formalism of ordinary statistical physic
no longer adequate to describe the phenomenon, as discu
for example by Grigolini, Rocco, and West@1#. In particular,
a lack of time-scale separation may induce a fractional,
chastic, differential equation on the macroscopic level@1,9#
to replace the Langevin equation. This is demonstrably
situation in financial markets where the time scales for in
vidual events are quite small, and the variability in sign
price indices produce a very short correlation time. Howev
the magnitude of the price index changes can have very
memory, in fact, correlation overlap with the longest tim
scales in the financial market.

The price index fluctuation data from financial marke
are not Gaussian, contrary to the early work in Ref.@3#, but
rather manifest distributions with fat tails@4#. The fluctua-
tions in the index of prices have been modeled by a prod
function g(t)5s(t)h(t), wheres(t) represents the change
in the sign of the price index andh(t) the change in the
magnitude of the price index@5#. It is well established tha
g(t) has an exponentially short correlation time due to
variability in sign, whereash(t) has an inverse power-law
correlation function. Such inverse power-law behavior h
been observed in many other complex phenomena, suc
crack growth@6#, earthquakes@7#, turbulence@8#, and for a
review of a number of others, see, for example, Ref.@9#.
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Given the absence of a universally accepted theoret
model of the dynamics of financial markets physicists int
ested in understanding the workings of complex phenom
have turned to uncovering any regularities that might be
certainable through empirical laws@10#. Among the first to
observe such regularities in a financial market context w
Mandelbrot, see Ref.@4# for a review of early work and
subsequent analysis. More recently, Stanley and his cow
ers at Boston University have systematically processed
of the largest financial time series of a tick to tick nature
the literature, determining for market price index fluctu
tions: the correlational properties@10#; the statistical proper-
ties @11#; the statistical properties of volume fluctuation
@12#; and the statistical properties for individual compan
@13#. The results of their investigations agree with those
other researchers and indicate that the statistical behavio
financial markets cannot be described by the dynamics
simple diffusive processes, as thought by early investiga
of the statistics of financial markets, see e.g., Montroll a
Badger@14#, but requires a more subtle analysis involvin
fractal statistical processes.

When the dynamical environment, to which a system
coupled, is fractal, for example, a fractal stochastic proce
the dynamics of the system cannot be represented by
solution of an ordinary differential equation. However, t
solutions to fractional differential operator equations s
yield mathematically well-defined quantities. Furthermo
the application of fractional equations of motion to physic
and social phenomena can be usefully interpreted in term
memory effects@15#. Further, with a number of papers su
porting the position that the stock market is a fractal en
ronment in time@16,4#, we argue that it is justified to emplo
a model of the dynamics of such a market using
Riemann-Liouville fractional operators@17#. In particular,
we know that for a physical process with memory, t
Langevin equation is generalized to the form

dv~ t !

dt
1E

0

t

K~ t2t8!v~ t8!dt85 f ~ t !, ~1!

where the memory kernel determines the influence of
process between points in time,f (t) is the random force and
the two are related by means of a generalized fluctuat
dissipation relation@18#. Herein we incorporate the memor
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BRIEF REPORTS PHYSICAL REVIEW E 65 037106
through a phenomenological memory kernal given by a fr
tional derivative rather than through Eq.~1!. This approach
has been taken by West, Bologna, and Grigolini@19# in
physical systems, so the fractional Langevin equation
suggest is the one proposed first by Glo¨ckle and Nonnenma
cher @20# in a rheology context

0Dt
a@v~ t !#2v0

t2a

G~12a!
52lav~ t !1j~ t !. ~2!

1>a.0, wherej(t) is a stochastic process, whose statist
must be specified and the initial value for the process
given by v0 . The operator 0Dt

a@•# is chosen to be a
Riemann-Liouville fractional derivative, see, for examp
@17,20#.

The general solution to the fractional Langevin Eq.~2! is
given by @19–21#

v~ t !5v0Ea~2@lt#a!1E
0

t

x2a21Ea,a~2laxa!j~ t2x!dx,

~3!

where the Green’s function for the solutionEa,a(x) is the
generalized Mittag-Leffler function given by the series

Ea,b~x![(
k50

`
xk

G~ka1b!
, a.0, b.0. ~4!

In the caseb51, the series reduces to the Mittag-Leffl
function. In addition whena51, the Mittag-Leffler function
becomes an exponential, so that the solution to the fractio
Langevin equation can become identical to that for
Ornstein-Uhlenbeck process@21#, but only when thej fluc-
tuations are given by a Wiener process. For financial mar
the dynamical variable is often given by the returnu(t)
5 ln@p(t1T)/p(T)#, wherep(t) is the price of a given stock a
time t. The quantity of interest in our model~2! is the mag-
nitude of the price changesv(t)[uu(t)u, which essentially
coincides withh(t) mentioned previously. With this defini
tion of the dynamical variable we have for the initial cond
tion v050 in Eqs.~2! and ~3!, and the fractional Langevin
equation for the financial market only represents the ma
tude of the price index variations. In our dynamical mod
we only impose the condition that the random driving for
is d correlated and we do not constrain the process wit
particular choice of statistical distribution.

The traditional quantities calculated from the magnitu
of the logarithm of the price time series are the autocorre
tion function and the standard deviation of the time ser
both of which are regarded as measures of the volati
depending on the context@22#. We can calculate these qua
tities using the solution to the fractional Langevin Eq.~3!.
The autocorrelation function C(t,t)5^v(t)v(t
2t)&/^v(t)2& is constructed using Eq.~3!, where the brack-
ets denote averages over thej fluctuations, which are as
sumed to bed correlated in time, with a finite magnitude. W
express the autocorrelation function as a function of the
mensionless time differencez5t/t to extract the dependenc
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of the autocorrelation function on the fractional derivati
index. The analytic form of the autocorrelation function
determined to be@19#

C~t,t !

5

(
k51

`

(
l 51

`
~21!k1 l 22~l l !ka1 la21~12z! la

G~ka!G~ la11!
Flk~12z!

(
k51

`

(
l 51

`
~2ul l ua!k1 l 22

G~ka!G~ la11!
Flk~1!

,

~5!

whereFlk(q)[F(1;12ka;11 la:q) is the hypergeometric
function. In Fig. 1 we observe the decrease in the au
correlation function as a function ofz. We fit this decrease
with the phenomenological equationC(z)5Az2B, over the
range 0.001<z<0.02, where the empirical parametersA and
B are functions of the fractional derivative indexa. The pa-
rameters are obtained by a least-squares fit of the indic
phenomenological equation to the autocorrelation funct
~5!. The values of the parameters for each value ofa are fit
in the indicated range yielding the coefficientsA521.18
12.03a andB50.8120.84a.

We can see from the figure that for early, but not too ea
times each curve has a dominant inverse power-law fo
but each with a different slope. Using the least-square
we write for a fixed-length time series the autocorrelati
function in the interval 0.001t<t<0.02t is

C~t!}t20.8110.84a, ~6!

where, since 0,a<1, we have an inverse power law int
for most of the range ofa. Here we can use the data analys
of Gopikrishnanet al. @10# for the correlation function of the
absolute value of the price returns in their Fig. 3~b! or that of
Liu et al. @11# in their Fig. 8~a!. The value of the power-law
index in the theoretical Eq.~6! is determined from Ref.@10#
to be 0.8120.84a50.3060.08, indicating a power-law in-
dex a50.6060.10. Further, using a Tauberian theorem,

FIG. 1. Autocorrelation function~5! is plotted versus the dimen
sionless time intervalz on log-log graph paper and a least-squa
fit to the function for 0.001<z<0.02 with the phenomenologica
equation. Only the valuesa50.9, 0.8, 0.7, and 0.6 are shown.
6-2



i

tiv
u

at
h
a
ifi

to
us
an

o
s
a

ar
,
tu
l

t
g-
te
en
ue

t

l

ss
ence
s to
n
et
ctal
the
rest

has
n
1.0
ani-
di-

of
ior

in-
ents
-

at
in-
ion
es.

cial
in-
ex

the

BRIEF REPORTS PHYSICAL REVIEW E 65 037106
conclude that the high-frequency form of the spectrum
given by the inverse power law

S~v!}v20.1920.84a ~7!

as long asa,1.
The autocorrelation function was devised as a quantita

measure of the linear dependence of the elements in Ga
ian random processes. Thus, even when the autocorrel
function drops precipitously to zero, this does not mean t
the price movements are statistically independent of one
other, only that the price increments do not contain sign
cant linear correlations, as has been well documented@23#.
The autocorrelation function is somewhat more difficult
interpret when the statistics of the fluctuations are not Ga
ian, but are of the inverse power-law form observed in fin
cial markets. One possible interpretation is that the lack
exponential relaxation indicates that the memory proces
not smooth. Rather, the inverse power law suggests a slip
or jerkiness to the system response, such as found in e
quakes, in the relaxation of stress in viscoelastic materials
microcrack propagation, and in the cascade of energy in
bulent fluid flow@6#. This behavior is quite common in socia
phenomena@9#, where there is a buildup of ‘‘strain’’ tha
often goes unnoticed until it is ‘‘released,’’ producing a si
nificant change in the system dynamics. This trigger is of
initiated by an innocuous event, thereby giving the ev
significance that is completely out of proportion to its tr
value. In this way the financial market responds strongly
the news that has been anticipated.

The integer value of the fractional derivative indexa
51 is a singular point. Ata512 the phenomenologica
spectrum given by Eq.~7! is asymptotically given byS(v)
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}1/v, that is, a spectrum corresponding to 1/f noise. As the
index deviates from 1a,1, the more clustered the proce
becomes and the more the events in the distant past influ
the present behavior of the financial market. Peters refer
this as pink noise@16#. Further, the greater the deviatio
from 1, the less reliable differential models of the mark
become. This is a consequence of the fact that the fra
dimension is a measure of the degree of irregularity of
time series. To understand this we note that the nea
neighbor correlation coefficient for a fractal process isr
52322D21 @9#. A completely correlated process hasr 51
implying D51, whereas an uncorrelated random process
r 50 implying D51.5, the fractal dimension for Brownia
motion @4#. Thus, as the fractal dimension increases from
to 1.5 the process becomes more and more irregular, m
festing less and less structure. The range of the fractal
mension is given by 1.19>D>1.0.

Note that a financial market is more than a collection
individual investors and, therefore, its collective behav
need not be the same as that of a ‘‘reasonable’’ average
vestor. The influence of the past events on the present ev
is found to be manifest in an intrinsic ‘‘inertia’’ in the mar
ket. A fractional derivation in the range 1.a>1/2, such as
found in the present fit to financial market data, implies th
when the price fluctuation increases, the probability of
creased volitility increases and when the price fluctuat
decreases, the probability of increased volitility decreas
This mechanisms tends to slightly destablize the finan
market, by adjusting the market strategy to amplify the
fluence of the change in the magnitude of the price ind
fluctuations and this behavior is reflected in the value of
fractal dimensionD51.15.
ys.
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